

 Operator 1 String Array

 Equality
–eq

–ceq

–ieq

<value> <op> <value> Boolean

"abc" –eq "def" False
"abc" –eq "Abc" True
"abc" –ceq "Abc" False
"Abc" –ceq "Abc" True

<array> <op> <value> Sub–list

"dog","dogwood","cat","Dog" –eq "dog" ("dog","Dog")
"dog","dogwood","cat","Dog" –ceq "Cat" ()
@() –eq "dog" ()

 Equality/negated
–ne

–cne

–ine

<value> <op> <value> Boolean

"abc" –ne "def" True
"abc" –ne "Abc" False
"abc" –cne "Abc" True
"Abc" –cne "Abc" False

<array> <op> <value> Sub–list

"dog","cat","Dog" –ne "dog" ("cat")
"dog","cat","Dog" –cne "dog" ("cat","Dog")
@() –ne "dog" ()

 Wildcard (glob) 2
–like

–clike

–ilike

<target> <op> <glob> Boolean

"dog" –like "dog*" True
"kookaburra" –like "k??k*burra" True
"kookaburra" –like "k?k*burra" False
"kookaburra" –clike "K*" False
"kookaburra" –clike "[kK]*" True

<array> <op> <glob> Sub–list

"f42e","12a8","a000","948f" –like "[a-f]*" ("f42e","a000")
"f42e","12a8","a000","948f" – like "[a-f]" ()
"dove","wren","Warbler" –like "w*" ("wren","Warbler")
"dove","wren","Warbler" –clike "w*" ("wren")

 Wildcard/negated 2
–notlike
–cnotlike

–inotlike

<target> <op> <glob> Boolean

"coelacanth" –notlike "cat" True
"dog" –notlike "D?g" False
"dog" –cnotlike "D?g" True

<array> <op> <glob> Sub–list

"dove","wren","Warbler" –notlike "w*" ("dove")
"dove","wren","Warbler" –cnotlike "w*" ("dove","Warbler")
"dove","wren","Warbler" –notlike "*" ()

 Regular expression 3
–match

–cmatch

–imatch

<target> <op> <regex> Boolean 4

"archaeopteryx" –match "arch.*" True
"archaeopteryx" –match ".*(ae|ea).*" True
"archaeopteryx" –match "ae|ea" True

<array> <op> <regex> Sub–list

"nutria","beaver","muskrat" –match "[mn]u.*" ("nutria","muskrat")
"a4.001","b3.902","c3.4he" –match "\.[0-9]{2,}" ("a4.001","b3.902")
"notebook","book","bookend" –match "book$" ("notebook","book")
"notebook","book","bookend" –match "^book$" ("book")

 Regex/negated 3
–notmatch
–cnotmatch
–inotmatch

<target> <op> <regex> Boolean 4

"bird" -notmatch "Bird.*" False

"bird" -cnotmatch "Bird.*" True

<array> <op> <regex> Sub–list

"dove","wren","Warbler" -notmatch "w.*" ("dove")

"dove","wren","Warbler" -cnotmatch "w.*" ("dove","Warbler")

 Membership
contains()

<target>.contains(<value>) Boolean

"archaeopteryx".contains("aeo") True
"archaeopteryx".contains("aeiou") False

 Not Available

 Membership
–contains
–ccontains
–icontains

<target> <op> <value> Boolean 5

"dog" –contains "Dog" True

"dog" –ccontains "Dog" False

"dog" –contains "d" False

<array> <op> <value> Boolean

"dog","dogwood" –contains "Dog" True

"dog","dogwood" –ccontains "Dog" False

"dog","dogwood","catfish" –ccontains "cat" False

Membership/negated
–notcontains
–cnotcontains
–inotcontains

<target> <op> <value> Boolean 5

"dog" –notcontains "Dog" False

"dog" –cnotcontains "Dog" True

<array> <op> <value> Boolean

"dog","dogwood" –notcontains "Dog" False

"dog","dogwood" –cnotcontains "Dog" True

 Switch command 6
This syntax applies

to all variants below.

switch (<value>)
{
 <choice> {<statements>}
 <choice> {<statements>}
 . . .

}

Arbitrary

(or no

return

value)

switch (<array>)
{ # iterates through the list
 <choice> {<statements>}
 <choice> {<statements>}
 . . .

}

Arbitrary (or

no return

value)

 Branch/equality
Switch [–Exact]

[–CaseSensitive]

Switch ("maybe") {
 "yes" {10}
 "no" {20}
}

Null

Switch ("dog","bird","lizard") {
 { "dog","cat" –contains $_ } { "$_ : housepet" }
 Default { "$_ : not sure" }
}

dog : housepet
bird : not sure
lizard : not sure

 Branch/wildcard 2
Switch –Wildcard

[–CaseSensitive]

Switch –wildcard ("a13") {
 "a??" {10}
 "b??" {20}
 default {$null}
}

10

Switch –wildcard –case ("dog","bird","Dog") {
 "D*" { "$_ : housepet" }
 "b??d" { "$_ : housepet" }
 Default { "$_ : not sure" }
}

dog : not sure
bird : housepet
Dog : housepet

 Branch/regex 3
Switch –Regex

[–CaseSensitive]

Switch –regex ("sR9X2T") { 4
 "^[a-l]" {10}
 "^[m-y]" {20}
 "^[z]" {99}
 default {$null}
}

20

switch –regex ("dog", "cat", "catfish", "catbird") {
 "cat(?!fish)" { "$_ : land" }
 "seal|whale|dolphin|catfish" { "$_ : sea" }
 "owl|eagle|osprey|catbird" { "$_ : air" }
 default { ("$_ : " + $null) }
}

dog : Null
cat : land
catfish : sea
catbird : land
catbird : air 7

Select–String
This syntax applies
to all variants below.

<target> <op> <value> string

<target> <op> <value> Sub–list

Select–String/equality
ss 8 –SimpleMatch

[–CaseSensitive]

"dog" | ss –simple "dog" "dog"

"dog" | ss –simple "do" "dog"

"dog","Dog" | ss –simple "dog" ("dog","Dog")

"dog","Dog","dogbone" | ss –case –simple "dog" ("dog","dogbone")

Select–String/wildcard Not Available Not Available
Select–String/regex

ss 8 [–CaseSensitive]
"coelacanth" | ss "c..l.*th" "coelacanth"
"coelacanth" | ss "c.*" "coelacanth"

"a1","a2","ab3","AB3" | ss "ab.*" ("ab3","AB3")
"a1","a2","ab3","AB3" | ss –case "ab.*" ("ab3")

"ab3","abcd","ado" | ss "ab*" 9 ("ab3","abcd","ado")

Select–String/negated
ss 8 –NotMatch

[–SimpleMatch]
[–CaseSensitive]

"dog" | ss –simple -NotMatch "dog" Null

"dog" | ss –simple -NotMatch "cat" "dog"

"dog" | ss –not "" <illegal>

"dog","Cat","catfish" | ss –not "Cat.*h" ("dog","Cat")

"dog","Cat","catfish" | ss –simple -not -case "Cat" ("dog","catfish")

"dog","dogbone" | ss –not "dog" Null

1 Each operator has three variations:
> default (e.g. –eq),
> case-sensitive (e.g. –ceq), and
> case-insensitive e.g. –ieq).
Note that the default in each case is
case–insensitive so –eq is exactly
equivalent to –ieq; the latter is
provided if you have a preference for
being explicit.
See about_Comparison_Operators.

2 Wildcards include:
> asterisk (*) for any number of
chars;
> question mark (?) for any single
char;
> brackets ([]) for single, enumerated
char or char range.
Must match input in its entirety.
See about_Wildcards.

3 Regular expressions provide a
powerful but complex matching
construct; the PowerShell reference
(about_Regular_Expressions)
documents only a portion of it;
PowerShell actually supports the full
.NET implementation—see Regular
Expression Language Elements .

4 Populates $Matches where:
> $Matches[0] contains entire match
> $Matches [n] contains nth match

5 –contains technically only operates
on a list; with a scalar it is equivalent
to –eq.

6 The switch statement implicitly uses
–eq in selecting a match; specifying

–CaseSensitive modifies this to –ceq.
The –Wildcard and –Regex
parameters may be used to effect
–like or –match, respectively.
Similarly adding –CaseSensitive
modifies these to –clike or –cmatch.
Switch syntax even allows specifying
your own arbitrary operator or more
complex Boolean expression: instead
of specifying a choice as a simple
value (string, number, or variable)
use a code block to specify an
expression, where the standard $_
automatic variable references the
input value.
See about_Switch.

7 This deliberate error shows that
switch evaluates every expression
unless you use break statements!

8 Select–String examples use a custom
ss alias for brevity.

9 This might look like a wildcard, but it
is a regex! As a wildcard, it would
have returned ("ab3","abcd") only.

Other References:
about_Operators
Conditional Operators
Operator enumeration
Mastering PowerShell, chapter 7

PowerShell String Comparison and List Filtering
This reference brings together relevant operators plus key

language constructs to compare strings in either scalar or array context.

(Available online at Simple-Talk.com at http://bit.ly/l7g6Fj.)

LEGEND

 Equality

 Wilcard

 Regex

Copyright © 2011 Michael Sorens

2011.06.08 ● Version 1.0.1

Download the latest version from

Simple-Talk http://bit.ly/l7g6Fj

http://technet.microsoft.com/en-us/library/dd315321.aspx
http://technet.microsoft.com/en-us/library/dd315323.aspx
http://technet.microsoft.com/en-us/library/dd315294.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://technet.microsoft.com/en-us/library/dd347715.aspx
http://technet.microsoft.com/en-us/library/dd347588.aspx
http://www.computerperformance.co.uk/powershell/powershell_conditional_operators.htm
http://www.eggheadcafe.com/software/aspnet/33515781/powershell-operators.aspx
http://powershell.com/cs/blogs/ebook/archive/2009/03/08/chapter-7-conditions.aspx
http://www.simple-talk.com/author/michael-sorens/

